Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (2): 674-683.DOI: 10.13196/j.cims.2023.0629

Previous Articles     Next Articles

Decision optimization of finished product transfer in iron and steel enterprises based on Stackelberg game

LI Qingxue1,2,CUI Tianshuo2,ZHANG Hao1,2+   

  1. 1.School of Economics and Management,Harbin Engineering University
    2.School of Economics and Management,Harbin University of Science and Technology
  • Online:2025-02-28 Published:2025-03-07
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.72074062),and the Youth Innovation Talents Training Program of Heilongjiang Provincial Universities,China(No.UNPYSCI-2020201).

基于Stackelberg博弈的钢铁企业产成品转库决策优化

李庆雪1,2,崔添硕2,张昊1,2+   

  1. 1.哈尔滨工程大学经济管理学院
    2.哈尔滨理工大学经济与管理学院
  • 作者简介:
    李庆雪(1989-),女,黑龙江哈尔滨人,哈尔滨工程大学经济管理学院博士后,哈尔滨理工大学经济与管理学院副教授,博士,博士生导师,研究方向:服务化困境、先进制造业战略研究、工业物流数据解析与优化,E-mail:liqingxue650@126.com;

    崔添硕(1998-),女,吉林长春人,硕士研究生,研究方向:工业物流数据解析与优化,E-mail:1712118588@qq.com;

    +张昊(1986-),男,黑龙江黑河人,哈尔滨工程大学经济管理学院博士后,哈尔滨理工大学经济与管理学院讲师,博士,硕士生导师,研究方向:产业经济、工业物流数据解析与优化,通讯作者,E-mail:zhanghao9088@hrbust.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(72074062);黑龙江省普通本科高等学校青年创新人才培养计划资助项目(UNPYSCI-2020201)。

Abstract: Transfer logistics is the key link of logistics cost control in the steel industry,and the decision of finished product transfer flow direction also plays a decisive role in the efficiency of transfer logistics.For the problem of finished product transfer flow direction between the end warehouse and finished product warehouse of steel enterprises,considering the supply and demand relationship between the end warehouse and the finished product warehouse,the Stackelberg game model was constructed with the objective function of maximum revenue and minimum cost of transfer warehouse,and the game model was validated and solved by the Q-Learning algorithm,which fit the feature constraints reflecting the priority of waterway transportation into the algorithm's coding.Based on the characteristics of different sizes of finished goods transshipment data,the algorithm was generated,and the experimental results showed that the Q-Learning algorithm was able to find the optimal transshipment strategy for different sizes of transshipment problems,and compared with the related solution algorithms,the Q-Learning algorithm had a stronger superiority.

Key words: steel industry, transfer of finished products to storage, supply and demand relationship, Stackelberg game, Q-Learning algorithm

摘要: 针对钢铁企业末端库与成品库之间的产成品转库问题,考虑末端库与成品库之间的供需关系,以最大化转库收益最小化转库成本为目标函数构建了Stackelberg博弈模型,结合模型特征,采用Q-Learning算法对博弈模型进行验证求解,将体现水路运输为优先考虑因素的特征约束拟合到算法编码中。最后基于不同规模的产成品转库数据特征生成算例,实验结果表明Q-Learning算法能够对大、中、小不同规模的转库问题求得最优转库策略,并具有更强的优越性。

关键词: 钢铁企业, 产成品转库, 供需关系, Stackelberg博弈, Q-Learning算法

CLC Number: