Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (12): 4435-4445.DOI: 10.13196/j.cims.2022.0394

Previous Articles     Next Articles

Product surface quality inspection method based on VGG16-SVM-SSA

ZHONG Wuchang1,ZHAN Hongfei1+,LIN Yingjun2,YE Chen1,YU Junhe1,WANG Rui1   

  1. 1.Faculty of Mechanical Engineering and Mechanics,Ningbo University
    2.Bank of China(Ningbo) Battery Co.,Ltd.
  • Online:2024-12-31 Published:2025-01-08
  • Supported by:
    Project supported by the Zhejiang Provincial Natural Science Foundation,China(No.Z25E050003),the  National Natural Science Foundation,China(No.71671097) ,the Ningbo University “Double World-Class Project”Cooperation Special Directional Entrusted Scientific and Technological Cooperation Key Projects,China(HX2024000402), and the Health Smart Kitchen Zhejiang Engineering Research Center,China.

基于VGG16-SVM-SSA的产品表面质量检测方法

钟武昌1,战洪飞1+,林颖俊2,叶晨1,余军合1,王瑞1   

  1. 1.宁波大学机械工程与力学学院
    2.中银(宁波)电池有限公司
  • 作者简介:
    钟武昌(1993-),男,江西赣州人,硕士研究生,研究方向:智能制造、知识管理,E-mail:1819823393@qq.com;

    +战洪飞(1970-),男,辽宁黑山人,教授,博士,研究方向:知识管理、企业信息化,通讯作者,E-mail:zhanhongfei@nbu.edu.cn;

    林颖俊(1986-),女,浙江衢州人,硕士研究生,研究方向:品质管理、装备与工艺开发,E-mail:yjlin0819@163.com;

    叶晨(1995-),男,江苏扬州人,硕士研究生,研究方向:知识管理、资源配置,E-mail:15295500807@163.com;

    余军合(1971-),男,湖北天门人,副教授,博士,研究方向:制造系统工程,E-mail:yujunhe@nbu.edu.cn;

    王瑞(1989-),男,山东德州人,讲师,博士,研究方向:计算机技术,E-mail:wangrui@nbu.edu.cn。
  • 基金资助:
    浙江省自然科学基金资助项目(Z25E050003);国家自然科学基金资助项目(71671097);宁波市各区县支持宁波大学“双一流”建设合作任务分设项目(HX2024000402);健康智慧厨房浙江省工程研究中心资助项目。

Abstract: Aiming at the problems of missing detection,wrong detection and low recognition efficiency in traditional visual detection methods,a product surface quality detection method based on deep learning was proposed to accelerate the detection efficiency of production line and improve the intelligent level of quality control.Starting from the basic process of product surface quality inspection,the product surface quality problem modeling was carried out.On this basis,an improved vgg16 network model was constructed for image recognition,which used Support Vector Machine(SVM) to replace the softmax classifier in VGG16 network model,and applied Sparrow Search Algorithm(SSA) to further optimize the super parameters of SVM,so as to enhance the classification accuracy of the model.At the same time,the image defect feature knowledge base was built and the surface defect data system of standard products was developed.Finally,the quality detection system of industrial cloud platform based on deep learning was designed and developed to realize the efficient interactive connection between production line,equipment and personnel,as well as the real-time collection,transmission,intelligent detection and data management of product surface quality data.The feasibility of the proposed model and method proposed was verified by the case of cast impeller.

Key words: quality inspection, VGG16 network model, support vector machine, sparrow search algorithm, industrial cloud platform

摘要: 针对传统视觉检测方法容易出现漏检、错检、识别效率低等问题,提出一种基于深度学习的产品表面质量检测方法,加速产线检测效率和提高质量控制智能化水平。首先,从产品表面质量检测基本流程出发,进行产品表面质量问题建模。在此基础上,构建改进的VGG16网络模型进行图像识别,该模型采用支持向量机(SVM)代替VGG16网络模型中的softmax分类器,并引用麻雀搜索算法(SSA)进一步优化SVM超参数,从而增强模型分类精度。同时搭建图像缺陷特征知识库,完善标准产品表面缺陷数据体系。最后,设计开发了基于深度学习的工业云平台质量检测系统,实现产线、设备、人员之间的高效交互联通,以及产品表面质量数据的实时采集、传输、智能检测和数据管理,采用铸造叶轮案例验证了所提模型和方法的可行性。

关键词: 质量检测, VGG16网络模型, 支持向量机, 麻雀搜索算法, 工业云平台

CLC Number: