Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (9): 3125-3141.DOI: 10.13196/j.cims.2022.0100

Previous Articles     Next Articles

Modified biology migration algorithm for dual-resource energy-saving flexible job shop scheduling problem

LIU Lu1,2,SONG Haicao3,JIANG Tianhua1,2+,DENG Guanlong4,GONG Qingtao2,5   

  1. 1.School of Transportation,Ludong University
    2.Shandong Provincial Marine Aerospace Equipment Technological Innovation Center,Ludong University
    3.School of Management Science and Engineering,Shandong Technology and Business University
    4.School of Information and Electrical Engineering,Ludong University
    5.ULASAN and Ocean College,Ludong University
  • Online:2024-09-30 Published:2024-10-09
  • Supported by:
    Project supported by the Innovation Program of Shandong Province,China(No.2020CXGC010702,2021CXGC010702),the Natural Science Foundation of Shandong Province,China(No.ZR2021MG008),the Youth Innovation Science and Technology Supporting Plan for Universities in Shandong Province,China(No.2019KJN002),the Science and Technology Plan of Yantai City,China(No.2021XDHZ072),and the Doctoral Foundation of Shandong Technology and Business University,China(No.BS201938).

基于改进生物迁徙算法的双资源柔性作业车间节能调度问题

刘璐1,2,宋海草3,姜天华1,2+,邓冠龙4,巩庆涛2,5   

  1. 1.鲁东大学交通学院
    2.鲁东大学山东省海上航天装备技术创新中心
    3.山东工商学院管理科学与工程学院
    4.鲁东大学信息与电气工程学院
    5.鲁东大学蔚山船舶与海洋学院
  • 作者简介:
    刘璐(1982-),女,辽宁本溪人,教授,博士,研究方向:物流调度与智能优化,E-mail:tliulut@126.com;

    宋海草(1980-),女,陕西西安人,副教授,博士,研究方向:生产调度与供应链管理,E-mail:songhaicao@sina.com;

    +姜天华(1983-),男,山东威海人,副教授,博士,研究方向:车间调度与智能优化,通讯作者,E-mail:jth1127@163.com;

    邓冠龙(1985-),男,湖南郴州人,副教授,博士,研究方向:车间调度与智能优化,E-mail:dglag@163.com;

    巩庆涛(1982-),男,山东临沂人,教授,博士,研究方向:智能制造装备设计与优化,E-mail:gongqt@ldu.edu.cn。
  • 基金资助:
    山东省重大创新工程资助项目(2020CXGC010702,2021CXGC010702);山东省自然科学基金面上资助项目(ZR2021MG008);山东省高等学校青创科技支持计划资助项目(2019KJN002);烟台市科技计划资助项目(2021XDHZ072);山东工商学院引进博士基金资助项目(BS201938)。

Abstract: Energy-saving scheduling is a workshop scheduling problem oriented to green manufacturing,which has become a research hot spot in the manufacturing field.Aiming at the flexible job shop with dual resource constraints of machine and worker,the effects of worker learning and job transportation time were considered simultaneously to minimize the energy consumption of the workshop,and a Modified Biology Migration Algorithm (MBMA) was proposed.In the algorithm,a job-machine-worker based three-segment encoding method was adopted to represent the scheduling solution,and a population initialization approach was design to improve the quality of initial scheduling solutions.Considering that the basic biology migration algorithm cannot be directly applied to the discrete workshop scheduling problem,a discrete biological migration operator based on crossover operations was proposed,by which the algorithm could search directly in the discrete scheduling domain.Furthermore,a dynamic adjustment strategy of the conversion probability was introduced into the migration operator to balance exploration and exploitation of the algorithm,and a memory pool mechanism was added to avoid the premature convergence.For the individual updating operator,a local search algorithm was designed and embedded to enhance the local search ability of the algorithm.Finally,a large number of experimental results showed that the computational results of MBMA were superior to other algorithms.

Key words: dual-resource constraint, worker learning effect, job transportation time, flexible job shop, energy-saving scheduling, biology migration algorithm, green manufacturing

摘要: 节能调度是面向绿色制造的车间调度问题,已成为制造领域的研究热点。针对具有机器和工人双资源约束的柔性作业车间,综合考虑工人学习效应和工件运输时间的影响,以最小化车间能耗为目标,提出一种改进的生物迁徙算法(MBMA)。该算法采用基于工件-机器-工人的三段式编码方法表示调度解,并设计了一种种群初始化方法,以改善初始调度解的质量。考虑到基本生物迁徙算法无法直接应用于离散车间调度问题,提出一种基于交叉操作的离散迁徙算子,使算法能够直接在离散调度空间内进行搜索。此外,在迁徙算子中引入转换概率动态调整策略,以平衡算法探索与开发能力,另外增加了一种记忆池机制,避免算法过早收敛。对于个体更新算子,设计了一种局部搜索算法嵌入其中,以增强算法局部搜索能力。大量实验结果表明,MBMA算法的计算结果优于其他算法。

关键词: 双资源约束, 工人学习效应, 工件运输时间, 柔性作业车间, 节能调度, 生物迁徙算法, 绿色制造

CLC Number: