Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (8): 2644-2651.DOI: 10.13196/j.cims.2023.BPM03

Previous Articles     Next Articles

Unsupervised event detector for time series data in industrial Internet scenario

CUI Bowen,LU Beichen,JIN Tao+,WANG Jianmin   

  1. School of Software,Tsinghua University
  • Online:2024-08-31 Published:2024-09-03
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2020YFB1707604).

基于无监督学习的工业互联网时序数据事件检测

崔博文,卢北辰,金涛+,王建民   

  1. 清华大学软件学院
  • 作者简介:
    崔博文(1996-),男,山东烟台人,硕士研究生,研究方向:深度学习、业务过程管理等,E-mail:13121213717@163.com;

    卢北辰(1999-),男,山东济宁人,硕士研究生,研究方向:数据挖掘、业务过程管理等,E-mail:lubc16@163.com;

    +金涛(1980-),男,湖北当阳人,副研究员,博士,研究方向:业务过程管理、工作流、临床路径、大数据、数据安全等,通讯作者,E-mail:jintao16@mail.tsinghua.edu.cn;

    王建民(1968-),男,吉林磐石人,教授,博士,研究方向:数据管理与信息系统、非结构化数据管理、业务过程与产品生命周期管理、数字版权管理、系统安全、数据库测试等,E-mail:jimwang@tsinghua.edu.cn。
  • 基金资助:
    国家重点研发计划资助项目(2020YFB1707604)。

Abstract: To solve the problem of unsupervised event detection on time series data without event labels,an unsupervised event extraction algorithm based on probabilistic models was proposed,which improved the efficiency and accuracy of the event extraction results by using pre-filtering and group voting strategies based on Generalized Likelihood Ratio(GLR)algorithm.Besides,a time series data clustering algorithm based on hierarchical clustering was proposed,which combined divisive hierarchical clustering with Normalized Maximum Eigengap(NME)algorithm and achieved high accuracy while estimating the number of clusters automatically.

Key words: event detection, time series, unsupervised learning, process mining

摘要: 为了在不依赖事件标签的前提下对时间序列数据进行事件检测,提出一种基于概率模型的无监督时间序列数据事件抽取算法,该算法在广义似然比(GLR)算法的基础上,通过预先筛选和分组投票的策略,使得算法的事件抽取效率与抽取结果的准确程度都得到了一定的提升。此外,还提出了一种基于分裂式层次聚类的时序数据聚类算法,该算法将自上而下的分裂式层次聚类与NME算法相结合,在自适应估计结果类簇数量的前提下达到了较高的准确度。

关键词: 事件检测, 时间序列, 无监督学习, 过程挖掘

CLC Number: