›› 2017, Vol. 23 ›› Issue (第5期): 955-962.DOI: 10.13196/j.cims.2017.05.005

Previous Articles     Next Articles

Security and cost aware scheduling method for instance-intensive cloud workflows

  

  • Online:2017-05-31 Published:2017-05-31
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.61402167,61572187,61672276,61402168),the National Key Technology R&D Program,China(No.2015BAF32B01),the Innovation Platform Open Foundation of Hunan Provincial Education Department,China(No.17K033),the Hunan Provincial Natural Science Foundation,China(No.2017JJ4036,2016JJ2056),and the Key Project of Research Fund in Hunan Provincial Education Department,China(No.15A064).

安全与成本感知的实例密集型云工作流调度方法

文一凭1,2,窦万春1,刘建勋2,陈爱民3,周旻昊4   

  1. 1.南京大学计算机软件新技术国家重点实验室
    2.湖南科技大学知识处理与网络化制造湖南省普通高校重点实验室
    3.湘潭市规划信息技术研究中心
    4.湖南华菱湘潭钢铁有限公司
  • 基金资助:
    国家自然科学基金资助项目(61402167,61572187,61672276,61402168);国家科技支撑计划资助项目(2015BAF32B01);湖南省教育厅创新平台开放基金资助项目(17K033);湖南省自然科学基金资助项目(2017JJ4036,2016JJ2056);湖南省教育厅重点资助项目(15A064)。

Abstract: To overcome the shortcomings in existing scheduling methods for instance-intensive cloud workflow,a scheduling model that considered security requirements and instance-aspect handling of workflows was constructed.The instance-aspect handling strategy among concurrent workflow was proposed based on user's trust degree.A security and cost aware scheduling algorithm for instance-intensive cloud workflows named SC-ICW was designed,which could meet the security requirements under the deadline constraint and reduce the cost and security risks involved in the instance-aspect handling of workflows.The effectiveness of proposed algorithm was illustrated with simulation experiments.

Key words: instance-intensive cloud workflow, security, cost, user's trust degree, scheduling

摘要: 针对现有实例密集型云工作流调度方法未考虑安全需求及未引入实例的不足,构建了相应的调度模型,并通过借鉴信任管理的思想,提出基于用户信任度的工作流实例方面处理策略以及一种安全与成本感知的实例密集型云工作流调度算法(SC-ICW)。该算法可在满足截止时间与安全需求约束的前提下优化执行成本,并减少实例方面处理可能引发的安全风险。通过仿真实验说明了该算法的有效性。

关键词: 实例密集型云工作流, 安全, 成本, 用户信任度, 调度

CLC Number: