Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (2): 490-498.DOI: 10.13196/j.cims.2022.0615

Previous Articles     Next Articles

Grasping detection method of irregular shaped parts based on deep learning

SUN Xiantao1,YANG Yinming1,WANG Chen1,CHEN Wenjie1+,HU Xiangtao1,CHEN Weihai2   

  1. 1.School of Electrical Engineering and Automation,Anhui University
    2.School of Automation Science and Electrical Engineering,Beihang University
  • Online:2025-02-28 Published:2025-03-06
  • Supported by:
    Projects supported by the National Natural Science Foundation,China(No.52005001).

基于深度学习的异状零件抓取检测方法

孙先涛1,杨茵鸣1,王辰1,陈文杰1+,胡祥涛1,陈伟海2   

  1. 1.安徽大学电气工程与自动化学院
    2.北京航空航天大学自动化科学与电气工程学院
  • 作者简介:
    孙先涛(1985-),男,山东烟台人,副教授,博士,研究方向:欠驱动机械手、机器视觉、精密操作,E-mail:xtsun@ahu.edu.cn;

    杨茵鸣(1998-),男,安徽合肥人,硕士研究生,研究方向:机器视觉,E-mail:17356586272@qq.com;

    王辰(1992-),男,河南商丘人,硕士研究生,研究方向:欠驱动机械手、精密操作,E-mail:wangc8168@163.com;

    +陈文杰(1964-),男,广西柳州人,教授,博士,研究方向:助力外骨骼及康复外骨骼、智能优化、欠驱动机械手、机器视觉,通讯作者,E-mail:wjchen@ahu.edu.cn;

    胡祥涛(1981-),男,安徽桐城人,教授,博士,研究方向:机器学习、数字孪生技术、机器人、智能制造,E-mail:hust_hoo@163.com;

    陈伟海(1955-),男,北京人,教授,博士,研究方向:康复机器人、仿生机器人、机器人智能检测与运动控制、柔性机构设计与控制,E-mail:whchenbuaa@126.com。
  • 基金资助:
    国家自然科学基金资助项目(52005001)。

Abstract: The problems that the visual system cannot accurately locate parts due to the defects of machined parts have seriously affected the promotion of production automation in small and medium-sized enterprises.To solve this problem,a grasping detection method for abnormal parts was proposed.A Key Point Detection Model(KPDM)based on deep learning was designed to detect the grasping key points of different parts,and then a pose solving module was designed according to the key point position information and hand-eye calibration parameters to calculate the grasping pose of the parts.By combining the architecture of the image segmentation model Deeplab V3+ with the heatmap supervision method,KPDM could capture keypoints from input images.The experimental results showed that the proposed visual grasping system could accurately estimate the position and orientation of parts with different shapes.Taking the electric iron soleplates as examples,the detection success rates for complete and incomplete soleplates in different lighting environments were 97.2% and 92.7% respectively.

Key words: robotic grasp, deep neural network, position and orientation detection, key point detection, heatmap

摘要: 针对加工零件存在残缺导致视觉系统无法准确定位而严重影响中小型企业生产自动化推广的问题,提出一种异状零件抓取检测方法。先基于深度学习设计一个关键点检测模型(KPDM)以检测不同异状零件的抓取关键点,再根据关键点位置信息和手眼标定参数设计一个位姿求解模块以解算出零件的抓取位姿。KPDM结合了图像分割模型Deeplab V3+的架构和热力图监督方式,可以通过输入的零件图像获取抓取关键点热力图。实验结果表明,该抓取方法可以在不同光照环境下准确预测完整零件和残缺零件的抓取位姿,其中两种零件的检测成功率分别为97.2%和92.7%。

关键词: 机器人抓取, 深度神经网络, 位姿检测, 关键点检测, 热力图

CLC Number: