Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (11): 4211-4233.DOI: 10.13196/j.cims.2024.0279

Previous Articles     Next Articles

Prediction of frequency response function based on hybrid lightweight data-drive for large-turbo generator stator-end winding

WANG Ting1,2,TANG Yu3,ZHAO Yang3,4,FAN Ye3,DENG Congying1,3,LU Sheng1,3+   

  1. 1.Institute for Advanced Sciences,CQUPT
    2.The Key Laboratory of Industrial Internet of Things and Networked Control,Ministry of Education,Chongqing University of Posts and Telecommunications
    3.School of Advanced Manufacturing Engineering,Chongqing University of Posts and Telecommunications
    4.State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi'an Jiaotong University
  • Online:2025-11-30 Published:2025-12-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51807019),the Science and Technology Research Program of Chongqing Municipal Education Commission,China(No.KJZD-K201900604),the Open Projects of State Key Laboratory for Strength and Vibration of Mechanical Structures,China(No.SV2020-KF-15),and the Chongqing Municipal Special Postdoctoral Science Foundation,China(No.XmT2018030).

混合轻量数据驱动大型电机定子绕组频响预测

王頲1,2,唐宇3,赵洋3,4,范冶3,邓聪颖1,3,禄盛1,3+   

  1. 1.重庆邮电大学高等科学研究院
    2.工业物联网与网络化控制教育部重点实验室
    3.重庆邮电大学先进制造工程学院
    4.西安交通大学机械结构强度与振动国家重点实验室
  • 作者简介:
    王頲(1977-),男,天津宁河人,教授,博士,研究方向:数字化设计与仿真技术、工业互联网智能制造、网络化控制,E-mail:wangting@cqupt.edu.cn;

    唐宇(1998-),男,重庆人,硕士研究生,研究方向:系统建模仿真与分析,E-mail:664714259@qq.com;

    赵洋(1988-),男,河北唐山人,副教授,博士,研究方向:结构动力学、数字化设计与仿真技术,E-mail:zhaoyang@cqupt.edu.cn;

    范冶(1998-),男,重庆人,硕士研究生,研究方向:系统建模仿真与分析,E-mail:940971729@qq.com;

    邓聪颖(1991-),女,重庆人,副教授,博士,研究方向:设备故障诊断,E-mail:dengcy@cqupt.edu.cn;

    +禄盛(1981-),男,新疆乌鲁木齐人,教授,博士,研究方向:智能结构与控制、数字化设计与仿真技术,通讯作者,E-mail:lusheng@cqupt.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(51807019);重庆市教委科学技术研究资助项目(KJZD-K201900604);机械结构强度与振动国家重点实验室开放基金资助项目(SV2020-KF-15);重庆市博士后科研资助项目(XmT2018030)。

Abstract: By combining with the finite element simulation,digital modeling and experimental modal analysis,the frequency response function of the stator-end winding were predict to solve the end vibration of large turbogenerator and promote the development of intelligent turbine.The finite element model of the stator-end winding was established,and the modal parameters were obtained in good agreement with the measured results.The harmonic response analysis was further carried out to calculate the frequency response function of each point,which was used as the data source for subsequent research.Then,a single-step prediction model of frequency response function was constructed based on the Light Gradient Boosted Machine(Light GBM)algorithm,and the Light GBM model was compared with BP neural network,random forest and XGBoost models.On the basis of data-driven model,a mechanical-data hybrid model based on mode-ratio K was innovatively established according to the physical laws of the system.The high efficiency,low memory consumption,accuracy,tunability and parallelization support of Light GBM were more suitable for solving the prediction task on frequency response function in vibration problem of large turbine generator end.The frequency domain and space domain characteristics of displacement response under different modes were presented by the response surface.Finally,the hybrid data-driven model of frequency response function of integrated winding was established.By comparing with the frequency response function calculated by the finite element model and evaluating the prediction accuracy of non-sample spatial data,the reliability and generalization of the hybrid data-driven model were verified.The proposed model could reflect the vibration quickly and accurately,and help to take measures in time.

Key words: stator-end winding, finite element, frequency response, mechanical-data hybrid drive, light gradient boosted machine

摘要: 结合有限元仿真、数字化建模和试验模态分析等方法,预测定子端部绕组的频响函数,以解决大型汽轮发电机端部振动问题,从而推动智慧汽轮机的发展。首先,通过建立定子端部绕组三维精细有限元模型,获取与实测吻合较好的模态参数。进一步进行谐响应分析,计算得到各点频响函数,并作为后续研究的数据来源。其次,模拟试验模态锤击实验法,基于轻型梯度提升机(Light GBM)算法构建单阶频响函数预测模型,并将Light GBM模型与BP神经网络、随机森林和XGBoost模型进行比较分析;在数据驱动模型基础上,创新地基于系统物理规律建立了基于振型比例K的机理-数据混合驱动模型。Light GBM的高效性、低内存消耗、准确性、可调性和并行化支持,更适合用于解决大型汽轮发电机端部振动问题中的频响函数预测任务。通过响应曲面,展示了不同模态下位移响应的频域和空间域特性。最后,建立整体绕组频响函数混合数据驱动模型。通过与有限元模型计算的频响函数进行比较,并评估非样本空间数据的预测精度,验证了该混合数据驱动模型的可靠性和泛化能力。该模型能够快速、准确反映发电机端部振动情况,协助维护人员及时发现问题并采取必要措施。结合有限元仿真、数字化建模和试验模态分析等方法,预测定子端部绕组的频响函数,以解决大型汽轮发电机端部振动问题,从而推动智慧汽轮机的发展。首先,通过建立定子端部绕组三维精细有限元模型,获取与实测吻合较好的模态参数。进一步进行谐响应分析,计算得到各点频响函数,并作为后续研究的数据来源。其次,模拟试验模态锤击实验法,基于轻型梯度提升机(Light GBM)算法构建单阶频响函数预测模型,并将Light GBM模型与BP神经网络、随机森林和XGBoost模型进行比较分析;在数据驱动模型基础上,创新地基于系统物理规律建立了基于振型比例K的机理-数据混合驱动模型。Light GBM的高效性、低内存消耗、准确性、可调性和并行化支持,更适合用于解决大型汽轮发电机端部振动问题中的频响函数预测任务。通过响应曲面,展示了不同模态下位移响应的频域和空间域特性。最后,建立整体绕组频响函数混合数据驱动模型。通过与有限元模型计算的频响函数进行比较,并评估非样本空间数据的预测精度,验证了该混合数据驱动模型的可靠性和泛化能力。该模型能够快速、准确反映发电机端部振动情况,协助维护人员及时发现问题并采取必要措施。

关键词: 定子端部绕组, 有限元, 频响函数, 机理-数据混合驱动, 轻型梯度提升机

CLC Number: