Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (12): 4152-4167.DOI: 10.13196/j.cims.2024.0573

Previous Articles     Next Articles

Reliability optimization design for product key structure based on integration dimension-reduction considering high-dimensional heterogeneous uncertainties

HONG Zhaoxi1,2,TAN Jianrong1,2+,HE Lili3,HU Bingtao2,ZHANG Zhifeng2,SONG Xiuju2,FENG Yixiong2,4   

  1. 1.Ningbo Innovation Center,Zhejiang University
    2.State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University
    3.School of Computer Science and Technology,Zhejiang Sci-Tech University
    4.State Key Laboratory of Public Big Data,Guizhou University
  • Online:2024-12-31 Published:2025-01-06
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52105281,52130501,51935009),and the Key R&D Program of Zhejiang Province,China(No.2024C01029,2024C01207).

高维混合不确定条件下基于降维积分的产品关键结构可靠性优化设计

洪兆溪1,2,谭建荣1,2+,何利力3,胡炳涛2,张志峰2,宋秀菊2,冯毅雄2,4   

  1. 1.浙江大学宁波科创中心
    2.浙江大学流体动力基础件与机电系统全国重点实验室
    3.浙江理工大学计算机科学与技术学院
    4.贵州大学省部共建公共大数据国家重点实验室
  • 作者简介:
    洪兆溪(1990-),女,浙江杭州人,助理研究员,博士,研究方向:智能设计与不确定性优化决策,E-mail:hzhx@zju.edu.cn;

    +谭建荣(1954-),男,浙江湖州人,中国工程院院士,教授,博士,博士生导师,研究方向:CAX 方法学、工程图学、企业信息化,通讯作者,E-mail:egi@zju.edu.cn;

    何利力(1966-),男,浙江诸暨人,教授,博士,博士生导师,研究方向:创新设计和数据智能,E-mail:llhe@zju.edu.cn;

    胡炳涛(1992-),男,山东烟台人,副研究员,博士,研究方向:产品设计理论与智能制造,E-mail:hubingtao@zju.edu.cn;

    张志峰(1991-),男,青海湟源人,博士研究生,研究方向:绿色设计理论与智能调度,E-mail:zhzhfeng@zju.edu.cn;

    宋秀菊(1989-),女,山东临清人,百人研究员,博士,博士生导师,研究方向:材料结构功能一体化设计,E-mail:songxiuju@zju.edu.cn;

    冯毅雄(1975-),男,浙江东阳人,教授,博士生导师,研究方向:产品数字化设计与数字孪生等,E-mail:fyxtv@zju.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(52105281,52130501,51935009);浙江省重点研发计划资助项目(2024C01029,2024C01207)。

Abstract: Reliability optimization design of key structure for complex products focuses on searching the optimal values of the design variables on the premise of meeting the reliability requirements,which is an important way to ensure product performance and improve human experience.It is worth noting that uncertainty factors are ubiquitous and diverse in the process of structural design,especially interval uncertainty and random uncertainty often exist at the same time and have high parameter dimensions,making traditional design methods no longer applicable.Therefore,a novel method of reliability optimization design for product key structure based on integration dimension-reduction was put forward that taken the high-dimensional heterogeneous uncertainties including random factors and interval factors into consideration.With the Kriging approximation modeling and the multi-objective particle swarm intelligence algorithm,the efficient double-layer nesting computing framework of reliability optimization for high-dimensional heterogeneous uncertainties product key structure was established.The inner layer was reliability analysis with integration dimension-reduction,where the random variables and interval variables in performance function for key structure were analyzed according to univariate dimension-reduction and Taylor expansion respectively.The upper and lower limits of performance function for key structure were obtained by the superposition of the low-dimensional integrations which were converted with the Gaussian integration to calculate the reliability of the key structure quickly.The outer layer was the iterative optimization with a multi-objective particle swarm optimization algorithm based on the reliability analysis results in inner layer,and the design vectors that could meet the reliability requirements were optimized by objective functions to obtain the optimal design vector.The calculation cost of reliability optimization design for product key structures with high-dimensional heterogeneous uncertainties could be reduced in this way.The rationality and superiority of the proposed method were verified by a case study of beam design for a large hydraulic press.

Key words: high-dimensional heterogeneous uncertainties, integration dimension-reduction, reliability optimization design, product key structure, double-layer nesting computing

摘要: 在产品可靠性中注入优化设计思想,在满足可靠度要求的前提下寻找能够使目标性能最优的关键结构设计变量取值,是保障产品性能和提升人类使用感受的重要途径。值得注意的是,不确定因素在结构设计过程中无处不在且品种多样,特别是区间不确定和随机不确定往往同时存在,并具有较高的参数维度,使得传统的设计方法不再适用。针对此问题,先引入积分降维来提升产品关键结构可靠性的分析速度,再通过Kriging近似建模技术和多目标粒子群智能算法,建立高维混合不确定产品关键结构可靠性优化设计的高效循环嵌套计算架构。内层计算聚焦于考虑高维混合不确定变量的产品关键结构功能函数降维积分以快速获取其上下界函数表征及对应的可靠性范围,外层计算则根据内层的可靠性分析结果来判断当前的结构设计变量是否满足可靠性要求并借助多目标粒子群智能算法进行搜索更新,有效减小了产品关键结构可靠性优化设计过程的计算工作量,并通过工程实例验证了所提方法的合理性与有效性。

关键词: 高维混合不确定, 降维积分, 可靠性优化设计, 产品结构, 双层嵌套计算

CLC Number: