Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (12): 4468-4476.DOI: 10.13196/j.cims.2023.0I03

Previous Articles     Next Articles

Online structural performance monitoring method of tower crane based on digital twin

JIA Zhengnan1,WANG Xin1,2,GAO Shunde1,2,SUN Tian3,ZHAO Xin3,LI Zilu3,SONG Xueguan1,2+   

  1. 1.大连理工大学机械工程学院
    2.大连理工大学高性能精密制造全国重点实验室
    3.抚顺永茂建筑机械有限公司
  • Online:2024-12-31 Published:2025-01-08
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2018YFB1700704),and the National Natural Science Foundation,China(No.52075068).

基于数字孪生的塔式起重机结构性能在线监测方法

贾政楠1,王欣1,2,高顺德1,2,孙田3,赵欣3,李子陆3,宋学官1,2+   

  1. 1.大连理工大学机械工程学院
    2.大连理工大学高性能精密制造全国重点实验室
    3.抚顺永茂建筑机械有限公司
  • 作者简介:
    贾政楠(1997-),男,山西晋中人,硕士研究生,研究方向:数字孪生,E-mail:jiazn0908@163.com;

    王欣(1972-),女,天津人,副教授,博士,研究方向:复杂结构CAD与智能计算、结构损伤识别与寿命评估、结构动力学与虚拟仿真等,E-mail:wangx@dlut.edu.cn;

    高顺德(1962-),男,山东乳山人,教授级高工,研究方向:工程机械设计理论与技术、计算机集成产品开发方法与技术、机械和液压传动及控制,E-mail:gaoshd@dlut.edu.cn;

    孙田(1982-),男,辽宁抚顺人,本科,研究方向:机械研究,E-mail:suntian@yongmao.com.cn;

    赵欣(1980-),男,辽宁沈阳人,博士,研究方向:机械设计,E-mail:ymbjzx@yongmao.com.cn;

    李子陆(1981-),男,山东莱州人,硕士,研究方向:计算流体力学,E-mail:lzl@yongmao.com.cn;

    +宋学官(1982-),男,辽宁大连人,教授,博士,博士生导师,研究方向:智能工程装备与基础件(工业阀门)、人工智能/工业大数据与数字孪生、多学科耦合建模与协同优化设计等,通讯作者,E-mail:sxg@dlut.edu.cn。
  • 基金资助:
    国家重点研发计划资助项目(2018YFB1700704);国家自然科学基金资助项目(52075068)。

Abstract: To ensure the safe operation and improve the intelligent level of tower crane,a monitoring method of tower crane structure performance based on digital twin was proposed.According to the operation characteristics of tower crane and the requirement of real-time monitoring,the digital twin frame of tower crane was put forward,and the functions of each part were elaborated in detail.The real-time state mapping of the tower crane was realized by establishing the motion model,the virtual model of the tower crane was constructed by using the grid simplification technology,and the structural performance of the tower crane was predicted online by using the artificial neural network technology.Taking STL760 boom tower crane as an example,the digital twin system of boom tower crane was established,which verified the feasibility of digital twin frame of tower crane,proved that the prediction results had high analysis speed and accuracy,and provided a new idea for the intelligent management of tower crane.

Key words: digital twin, tower crane, mesh simplification, online monitoring

摘要: 为了保证塔式起重机安全作业,提高塔式起重机的智能化水平,提出了基于数字孪生的塔式起重机结构性能监测方法。首先,根据塔式起重机的运行特点和实时监控的要求,提出了塔式起重机数字孪生框架,详细阐述了各部分的功能;其次,通过建立运动模型实现了塔式起重机实时状态映射、借助网格简化技术构建了塔机虚拟模型、利用人工神经网络技术实现塔式起重机的结构性能在线预测;最后,以STL760动臂塔式起重机为例,建立了动臂塔式起重机数字孪生系统,验证了塔式起重机数字孪生框架的可行性,证明了预测结果有较快的分析速度和较高的准确性,为塔机智能化管理提供了新思路。

关键词: 数字孪生, 塔式起重机, 网格简化, 在线监测

CLC Number: