Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (10): 3817-3830.DOI: 10.13196/j.cims.2023.0398

Previous Articles     Next Articles

Energy efficiency prediction method for ceramic manufacturing based on feature-weighted ensemble learning

MA Shuaiyin1,2,3,4,LI Min1,YIN Lei5+,KONG Xianguang5,WANG Chao6,XU Jun7   

  1. 1.School of Computer Science and Technology,Xi'an University of Posts and Telecommunications
    2.Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing,Xi'an University of Posts and Telecommunications
    3.Xi'an Key Laboratory of Big Data and Intelligent Computing,Xi'an University of Posts and Telecommunications
    4.Shaanxi Provincial “Four Subjects and One Union” 5G+Industrial Internet Communication Terminal Technology School-Enterprise Joint Research Center,Xi'an University of Posts and TeleCommunications
    5.School of Electro-Mechanical Engineering,Xidian Univerty
    6.Huida Sanitary Ware Co.,Ltd.
    7.Advanced Manufacturing Technology Innovation Center,Guangzhou Institute of Technology,Xidian University
  • Online:2025-10-31 Published:2025-11-19
  • Supported by:
    Project supported by the Shaanxi Provincial Social Science Fund Annual Project,China(No.2024D054),the Natural Science Basic Research Plan in Shaanxi Province,China(No.2022JQ-376),the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(No.22JK0567),the Special Construction Fund for Key Disciplines of Shaanxi Provincial Higher Education,China,the Postgraduate Innovation Fund of Xi'an University of Posts and Telecommunications,China(No.CXJJYL2022073),and the Fundamental Research Funds for the Central Universities,China(No.XJSJ23095).

基于特征加权集成学习的陶瓷制造能效预测方法研究

马帅印1,2,3,4,李敏1,殷磊5+,孔宪光5,王超6,胥军7   

  1. 1.西安邮电大学计算机学院
    2.西安邮电大学陕西省网络数据分析与智能处理重点实验室
    3.西安邮电大学西安市大数据与智能计算重点实验室
    4.西安邮电大学陕西省“四主体一联合”5G+工业互联网通讯终端技术校企联合研究中心
    5.西安电子科技大学机电工程学院
    6.惠达卫浴股份有限公司
    7.西安电子科技大学广州研究院先进制造技术创新中心
  • 作者简介:
    马帅印(1990-),男,河南平顶山人,副教授,硕士生导师,研究方向:物联网、大数据、人工智能、信息物理系统、边云协同、数字孪生等工业互联网技术驱动的绿色智能制造,E-mail:masy@xupt.edu.cn;

    李敏(1999-),女,山西大同人,硕士研究生,研究方向:智能制造、绿色制造,E-mail:Limin@stu.xupt.edu.cn;

    +殷磊(1973-),男,江西南昌人,副教授,硕士生导师,研究方向:智能制造、工业大数据平台技术,通讯作者,E-mail:yinlei_w@163.com;

    孔宪光(1974-),男,辽宁丹东人,教授,博士生导师,研究方向:面向智能制造的工业大数据与数字孪生技术,E-mail:kongxg@vip.sina.com;

    王超(1987-),男,河北唐山人,学士,研究方向:智能制造,E-mail:418493024@qq.com;

    胥军(1991-),男,湖北荆州人,准聘副教授,硕士生导师,研究方向:调度优化理论与应用、先进制造系统、工业过程控制,E-mail:xujun@xidian.edu.cn。
  • 基金资助:
    陕西省社会科学基金年度项目(2024D054);陕西省自然科学基础研究计划资助项目(2022JQ-376);陕西省教育厅资助项目(22JK0567);陕西省普通高等学校重点学科专项资金建设资助项目;西安邮电大学研究生创新基金资助项目(CXJJYL2022073);中央高校基本科研业务费专项资金资助项目(XJSJ23095)。

Abstract: Ceramic manufacturing as a typical energy-intensive consumption manufacturing industry,its energy saving and consumption reduction has been one of the hot issues of concern.Enterprises can find entry points for energy saving and consumption reduction through energy efficiency prediction to reduce production energy consumption and improve production energy efficiency.By analyzing the energy consumption data in the production process,an energy efficiency prediction model was established,which could accurately predict the energy consumption of the production process and provide support for the optimization of energy efficiency to realize the green manufacturing and sustainable development of high-energy-consuming industries.To address the above objectives,an energy efficiency prediction method for ceramic manufacturing based on feature-weighted Stacking ensemble learning was proposed.By analyzing the prediction performance and relevance of different models,the linear regression,extremely randomized tree,extreme gradient boosting and K nearest neighbors were identified as the base learners.Then,the different base learners were feature-weighted according to the prediction accuracy.Finally,the predictions from the weighted base learner were integrated using a light gradient boosting machine algorithm as a meta-model for prediction.The proposed method was validated through the ceramic manufacturing dataset,and the results showed that the prediction accuracy of the feature-weighted Stacking ensemble learning model was significantly higher than that of the traditional Stacking ensemble learning prediction model and the single-base learner model,which proved the validity of the proposed method,and provided theoretical support for the realization of the green manufacturing and sustainable development.

Key words: ceramic manufacturing, energy efficiency forecasting, Stacking ensemble learning model, feature weighting

摘要: 陶瓷制造作为典型的高能耗制造行业,其节能降耗一直是备受关注的热点问题之一。企业可通过能效预测找到节能降耗的切入点,从而降低生产能耗和提高生产能效。通过分析生产流程中的能耗数据,建立能效预测模型,准确预测生产过程的能源消耗,并为能效优化提供支撑,以实现高能耗产业的绿色制造与可持续发展。针对上述目标,提出基于特征加权Stacking集成学习的陶瓷制造能效预测方法,首先,通过分析不同模型的预测性能和相关性,确定线性回归、极端随机树、极限梯度提升树和k-最近邻作为基学习器;然后,根据预测精度对不同基学习器进行特征加权;最后,将加权后基学习器的预测结果进行集成,使用轻量级梯度提升算法作为元模型进行预测。基于陶瓷制造数据集,对提出的方法进行验证,结果表明:特征加权Stacking集成学习模型的预测精度要显著高于传统Stacking集成学习预测模型和单一基学习器模型,证明了所提方法的有效性,为实现绿色制造与可持续发展提供理论支撑。

关键词: 陶瓷制造, 能效预测, Stacking集成学习模型, 特征加权

CLC Number: