Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (11): 4055-4064.DOI: 10.13196/j.cims.2022.0294

Previous Articles     Next Articles

Multi-source degradation data fusion and remaining useful lifetime prediction with random failure threshold

XIANG Huachun1,WANG Zezhou2+,CAI Zhongyi1,CHEN Yunxiang1,WANG Lili1   

  1. 1.Equipment Management and UAV Engineering College,Air Force Engineering University
    2.No.93920 Unit of PLA
  • Online:2024-11-30 Published:2024-11-29
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.71901216).

考虑随机失效阈值的多源退化数据融合与剩余寿命预测

项华春1,王泽洲2+,蔡忠义1,陈云翔1,王莉莉1   

  1. 1.空军工程大学装备管理与无人机工程学院
    2.中国人民解放军93920部队
  • 作者简介:
    项华春(1980-),男,浙江龙游人,教授,硕士生导师,研究方向:装备可靠性评估、装备维修保障,E-mail:32134717@qq.com;

    +王泽洲(1992-),男,山西长治人,工程师,博士,研究方向:装备可靠性评估、剩余寿命预测、维修保障仿真训练,通讯作者,E-mail:350276267@qq.com;

    蔡忠义(1988-),男,湖北武汉人,副教授,硕士生导师,研究方向:装备可靠性评估、剩余寿命预测,E-mail:afeuczy@163.com;

    陈云翔(1962-),男,江苏句容人,教授,博士生导师,研究方向:装备可靠性评估、装备维修保障,E-mail:cyx87793@163.com;

    王莉莉(1983-),女,江苏南京人,副教授,硕士生导师,研究方向:装备维修保障、作战效能评估,E-mail:8574886@qq.com。
  • 基金资助:
    国家自然科学基金资助项目(71901216)。

Abstract: Aiming at the problem that the existing Remaining Useful Lifetime (RUL) prediction method fused with multi-source degradation data ignore the influence of the Random Failure Threshold (RFT),a multi-source degradation data fusion and RUL prediction method considering the RFT was proposed.A fusion coefficient determination criterion considering the RFT was established,and the multi-source degradation data were fused into a single Health Index (HI).The Wiener process with linear drift was used to establish the degradation model of the obtained HI,and the unknown parameters were estimated by Maximum Likelihood Estimation (MLE) method and updated Bayesian principle.Then,the analytical expression of RUL's Probability Distribution Function (PDF) under the influence of RFT was derived based on the full probability formula.Finally,the aero-engine degradation data was taken as an example to analyze,and the result proved that the proposed method could effectively improve the accuracy and precision of the RUL prediction and had engineering application value.

Key words: random failure threshold, data fusion, Wiener process, remaining useful lifetime prediction

摘要: 针对现有融合多源退化数据的剩余寿命预测方法忽略随机失效阈值影响的问题,提出一种考虑随机失效阈值的多源退化数据融合与剩余寿命预测方法。首先,建立考虑随机失效阈值的融合系数确定准则,将多源退化数据融合为单一健康指标;其次,采用带线性漂移的维纳过程建立所得健康指标的退化模型,利用极大似然估计法求解模型的未知参数,并基于贝叶斯原理对其进行更新;然后,基于全概率公式推导出随机失效阈值影响下剩余寿命概率分布的解析表达式;最后,以航空发动机退化数据为例进行分析,证明了所提方法能够有效提升剩余寿命预测的准确性与精度,具备工程应用价值。

关键词: 随机失效阈值, 数据融合, 维纳过程, 剩余寿命预测

CLC Number: