计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4695-4707.DOI: 10.13196/j.cims.2025.0057

• • 上一篇    下一篇

基于多源域加权迁移学习的滚动轴承开集故障诊断方法

尹超1,2,肖博1,2,李孝斌1,2+,李波1,2,王云龙1,2   

  1. 1.重庆大学机械与运载工程学院
    2.重庆大学高端装备机械传动全国重点实验室
  • 出版日期:2025-12-31 发布日期:2026-01-09
  • 作者简介:
    尹超(1974-),男,四川资中人,教授,博士生导师,研究方向:智能制造、网络协同制造、制造系统工程、新一代信息技术及应用,E-mail:ych925@cqu.edu.cn;

    肖博(2001-),男,湖北荆州人,硕士研究生,研究方向:轴承故障诊断,E-mail:202207131171t@stu.cqu.edu.cn;

    +李孝斌(1987-),男,重庆人,副教授,博士生导师,智能制造系主任,研究方向:智能制造、网络协同制造,以及大数据、物联网、人工智能等新一代信息技术在离散制造行业中的应用,通讯作者,E-mail:xiaobin_lee@cqu.edu.cn;

    李波(1986-),男,重庆人,博士研究生,研究方向:智能制造,E-mail:15140434@qq.com;

    王云龙(1998-),男,河南开封人,硕士研究生,研究方向:刀具磨损监测,E-mail:3165462180@qq.com。
  • 通讯作者简介:李孝斌(1987-),男,重庆人,副教授,博士生导师,智能制造系主任,研究方向:智能制造、网络协同制造,以及大数据、物联网、人工智能等新一代信息技术在离散制造行业中的应用,通讯作者,E-mail:xiaobin_lee@cqu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2023YFB3308001);国家自然科学基金资助项目(52475511,52075060);重庆市技术创新重大研发资助项目(CSTB2024TIAD-STX0029);重庆市自然科学基金面上资助项目(CSTB2022NSCQ-MSX1283)。

Open-set fault diagnosis method of rolling bearing based on multi-source domain weighted transfer learning

YIN Chao1,2,XIAO Bo1,2,LI Xiaobin1,2+,LI Bo1,2,WANG Yunlong1,2   

  1. 1.College of Mechanical and Vehicle Engnieering,Chongqing University
    2.State Key Laboratory of Mechanical Transmission For Advanced Equipment,Chongqing University
  • Online:2025-12-31 Published:2026-01-09
  • Supported by:
    Project supported by the National Key R&D Program,China (No.2023YFB3308001),the National Natural Science Foundation,China(No.52475511,52075060),the Science and Technology Innovation Key R&D Program of Chongqing Municipality,China(CSTB2024TIAD-STX0029),and the Natural Science Foundation of Chongqing Municipality,China(No.CSTB2022NSCQ-MSX1283).

摘要: 针对滚动轴承跨域迁移诊断过程中源域和目标域数据分布差异大且故障类别不一致,导致故障诊断模型的泛化能力和诊断精度不够理想的问题,提出一种基于多源域加权迁移学习的滚动轴承开集故障诊断方法。首先,设计一种基于分类器的故障类型感知策略,在迁移学习过程中通过辨别目标域中的特有故障类别来减少其与源域的特征分布对齐;然后,根据目标域数据在源域中的相似性得分对多个源域中产生的互补分类器进行加权,通过组合权重融合多个源域的诊断决策,以得到故障诊断精度更高的结果;最后,通过两个实验案例对所提方法进行可行性验证和对比分析。实验结果表明,所提方法在滚动轴承跨工况和跨机器迁移故障诊断场景下具有更高的诊断精度和更强的泛化性能。

关键词: 故障诊断, 迁移学习, 开集, 自适应训练

Abstract: To address performance degradation in cross-domain fault diagnosis caused by significant feature distribution shifts and class distribution discrepancies between source and target domains,a multi-source weighted transfer learning method was proposed.A fault type perception strategy based on classifiers was designed,which reduced feature distribution alignment between the target domain and the source domain by identifying unique classes in the target domain during domain adaptation transfer learning.The complementary classifiers generated from multiple source domains based on the similarity scores of target domain data in the source domain was weighted,combining these weights to fuse diagnostic decisions from multiple source domains for higher diagnostic accuracy.Two experimental cases were used to verify the feasibility and compare the proposed method.The results showed that the method achieved higher diagnostic accuracy and stronger generalization performance in cross-condition and cross-machine fault diagnosis scenarios for rolling bearing.

Key words: fault diagnosis, transfer learning, open-set, adversarial training

中图分类号: