计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4750-4759.DOI: 10.13196/j.cims.2024.0645

• • 上一篇    下一篇

基于Siamese CNN-LSTM的磨削变形预测方法

丁腾威1,冯硕1,李娜2,乔阳1,王相宇1+   

  1. 1.济南大学机械工程学院
    2.齐鲁理工学院智能制造与控制工程学院
  • 出版日期:2025-12-31 发布日期:2026-01-09
  • 作者简介:
    丁腾威(1999-),男,河南周口人,硕士研究生,研究方向:先进制造技术,E-mail:1304734057@qq.com;

    冯硕(1998-),男,山东日照人,硕士研究生,研究方向:先进制造技术,E-mail:1418821144@qq.com;

    李娜(1985-),女,山东济南人,副教授,博士,硕士生导师,研究方向:大数据分析处理、智能制造等,E-mail:nli@qlit.edu.cn;

    乔阳(1984-),男,山东济南人,副教授,博士,硕士生导师,研究方向:智能制造技术、生物医用材料的制备及加工、金属切削加工过程有限元建模与仿真等,E-mail:me_qiaoy@ujn.edu.cn;

    +王相宇(1988-),男,山东东营人,副教授,博士,硕士生导师,研究方向:先进制造技术,通讯作者,E-mail:me_wangxy@ujn.edu.cn。
  • 通讯作者简介:王相宇(1988-),男,山东东营人,副教授,博士,硕士生导师,研究方向:先进制造技术,通讯作者,E-mail:me_wangxy@ujn.edu.cn。
  • 基金资助:
    山东省科技型中小企业创新能力提升工程资助项目(2022TSGC2581);山东省重点研发计划资助项目(2024JMRH0307);山东省高等学校“青创团队计划”资助项目(2023KJ110)。

Grinding deformation prediction method based on Siamese CNN-LSTM

DING Tengwei1,FENG Shuo1,LI Na2,QIAO Yang1,WANG Xiangyu1+   

  1. 1.School of Mechanical Engineering,University of Jinan
    2.School of Intelligent Manufacturing and Control Engineering,Qilu Institute of Technology
  • Online:2025-12-31 Published:2026-01-09
  • Supported by:
    Project supported by the Shandong Provincial Science and Technology based Small and Medium Sized Enterprises Innovation Capability Enhancement Project,China(No.2022TSGC2581),the Key Research and Development Program of Shandong Province,China(No.2024JMRH0307),and the Shandong Provincial Higher Education“Youth Entrepreneurship Team Plan”,China(No.2023KJ110).

摘要: 传统CNN、LSTM及GRU等模型在处理磨削过程中的多变量耦合和信号非线性复杂性时,特征提取能力有限。本文提出了一种基于孪生CNN-LSTM网络的磨削变形预测方法,结合CNN的空间特征提取能力和LSTM的时间序列建模优势,提取磨削信号的局部与全局特征。通过共享权重的双输入结构,模型对比初始与当前信号特征,显著增强了磨削参数动态变化下的特征差异感知能力。试验表明,相较于传统单一模型(CNN、LSTM)、门控优化模型(GRU)及时空特征融合模型(CNN-LSTM),Siamese CNN-LSTM模型的验证集和测试集预测准确率分别达到95.86%和92.56%,较最优对照模型(CNN-LSTM)提升21.43%和15.64%且验证集RMSE和MAE显著降低,在复杂工况下表现出优异的预测精度和鲁棒性,为复杂工况下的变形预测提供了新的技术手段,具备广泛的应用潜力。

关键词: 磨削变形预测, 孪生神经网络, 多变量耦合条件, 特征对比学习

Abstract: Traditional models such as CNN,LSTM,and GRU have limited feature extraction capabilities when dealing with multivariate coupling and signal nonlinear complexity in the grinding process.A deformation prediction method based on twin CNN-LSTM network was proposed,which combined the spatial feature extraction ability of CNN and the time series modeling advantage of LSTM to extract local and global features of grinding signals.By using a dual input structure with shared weights,the model significantly enhanced its ability to perceive feature differences under dynamic changes in grinding parameters by comparing the initial and current signal features.The experiment showed that compared with the traditional single model(CNN,LSTM),gating optimization model(GRU)and Spatiotemporal feature fusion model(CNN-LSTM),the prediction accuracy of the validation set and test set of Siamese CNN-LSTM model and Siamese CNN-LSTM model respectively reached 95.86% and 92.56%,and increased by 21.43% and 15.64% compared with the optimal control model(CNN-LSTM).The RMSE and MAE of the validation set were significantly reduced,exhibiting excellent prediction accuracy and robustness under complex working conditions,providing a new technical means for deformation prediction under complex working conditions and having broad application potential.

Key words: grinding deformation prediction, twin neural network, multivariable coupling conditions, feature contrastive learning

中图分类号: