计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4685-4694.DOI: 10.13196/j.cims.2024.0607

• • 上一篇    下一篇

基于双重免疫算法的多目标动平衡优化

潘鑫1,2,杨柳青1,2,葛德宏1,2,卢加乔1,2+   

  1. 1.北京化工大学高端压缩机及系统技术全国重点实验室
    2.北京化工大学高端机械装备健康监控与自愈化北京市重点实验室
  • 出版日期:2025-12-31 发布日期:2026-01-08
  • 作者简介:
    潘鑫(1987-),男,山东菏泽人,教授,博士,研究方向:旋转机械故障诊断与振动主动控制,E-mail:panxinbuct@163.com;

    杨柳青(2000-),男,河南开封人,硕士研究生,研究方向:转子动力学与旋转机械动平衡,E-mail:yliuqing123@163.com;

    葛德宏(1999-),男,河南驻马店人,博士研究生,研究方向:旋转机械不平衡振动压液式主动控制技术,E-mail:2023400198@buct.edu.cn;

    +卢加乔(1995-),男,甘肃金昌人,师资博士后,博士,研究方向:转子动力学与不平衡振动人工自愈技术,通讯作者,E-mail:buctljq@163.com。
  • 通讯作者简介:卢加乔(1995-),男,甘肃金昌人,师资博士后,博士,研究方向:转子动力学与不平衡振动人工自愈技术,通讯作者,E-mail:buctljq@163.com
  • 基金资助:
    国家自然科学基金面上项目(51875031);北京市自然科学基金面上项目(3212010)。

Multi-objective dynamic balancing optimization algorithm based on double immune algorithm

PAN Xin1,2,YANG Liuqing1,2,GE Dehong1,2,LU Jiaqiao1,2+   

  1. 1.State Key Laboratory of High-end Compressor and System Technology,Beijing University of Chemical Technology
    2.Beijing Municipal Key Laboratory of High-end Mechanical Equipment Health Monitoring and Self-Recovery,Beijing University of Chemical Technology
  • Online:2025-12-31 Published:2026-01-08
  • Supported by:
    Project supported by the National Natural Science Foundation,Chins(No.51875031),and the Natural Science Foundation of Beijing Municipality,China(No.3212010).

摘要: 针对旋转机械设备振动问题,基于人体免疫机制,提出了一种基于双重免疫算法的多目标动平衡优化算法,帮助提高旋转设备的稳定性并降低残余振动较大值。第一重优化创新性地应用免疫算法针对不平衡振动进行动平衡;第二重优化则通过循环结构和权重调整,以残余振动平方和与残余振动的较大值最小化为目标,帮助提高整体抑振效果并降低残余振动较大值。在实验验证方面,通过模拟汽轮发电机组实验台分别进行仿真和现场动平衡实验,仿真下基于双重免疫算法的多目标动平衡优化算法得到的振动部分测点降幅明显高于其余算法;而现场动平衡显示其得到的残余振动在所有实验转速、测点下的振动振幅均低于最小二乘影响系数法。综合有限元仿真以及现场动平衡实验结果,证明了基于双重免疫算法的多目标动平衡优化算法的可行性和有效性。

关键词: 转子动平衡, 多平面多转速, 影响系数法, 免疫算法, 残余振动

Abstract: In addressing the vibration issue of rotating machinery,a multi-objective dynamic balancing optimization algorithm grounded in a double immune algorithm inspired by human immune system was proposed,which enhanced the stability of rotating equipment and mitigated the significant vibration levels.The initial optimization involved the innovative application of an immune algorithm to address unbalanced vibration dynamics.The subsequent optimization minimized the sum of residual vibration and the magnitude of the aforementioned vibration through a cyclic structure and weight adjustment,enhancing the overall suppression effect and reducing the significant vibration levels.Experimental verification was conducted through simulation and on-site dynamic balancing experiments on a simulated steam turbine generator test bed.The vibration reduction at several measured points obtained by the multi-objective dynamic balancing optimization algorithm based on the double immune algorithm was found to be significantly higher than that of the remaining algorithms.On-site dynamic balancing revealed that the residual vibration obtained by the algorithm was lower than that of the least squares influence coefficient method at all experimental speeds and measured points.The outcomes of both the finite element simulation and the field dynamic balancing experiment substantiated the feasibility and efficacy of the multi-objective dynamic balancing optimization algorithm based on the double immune algorithm.

Key words: rotor dynamic balancing, multi-plane and multi-speed, influence coefficient method, immune algorithm, residual vibration

中图分类号: