Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (10): 3594-3606.DOI: 10.13196/j.cims.2024.S03

Previous Articles     Next Articles

Automatic assembly named entity recognition method based on BERT-Tiny Transformer-CRF

QIAN Guanxiang1,YU Liya1+,LI Chuanjiang2,LI Shaobo2,XU Zhao1   

  1. 1.School of Mechanical Engineering,Guizhou University
    2.State Key Laboratory of Public Big Data,Guizhou University
  • Online:2025-10-31 Published:2025-10-31
  • Supported by:
    Project supported by the National Key R&D Program,China (No.2023YFB3308802),the National Natural Science Foundation,China (No.52275480),and the Basic Research Program of Guizhou Province (Natural Science) Youth and General Projects,China(No.QKH[2024]Youth160,QKH MS〔2025〕601).

基于BERT-Tiny Transformer-CRF的自动化装配命名实体识别方法

钱冠翔1,于丽娅1+,李传江2,李少波2,徐兆1   

  1. 1.贵州大学机械工程学院
    2.贵州大学省部共建公共大数据国家重点实验室
  • 作者简介:
    钱冠翔(2000-),男,贵州贵阳人,硕士研究生,研究方向:智能制造,E-mail:guanxiangqian@sina.com;

    +于丽娅(1982-),女,贵州贵阳人,副教授,博士,硕士生导师,研究方向:智能制造、无人机、多模式协同场景与业务跨界融合研究,通讯作者,E-mail:lyy@gzu.edu.cn;

    李传江(1995-),男,山西临汾人,博士,研究方向:工业大数据、智能制造,E-mail:licj@gzu.edu.cn;

    李少波(1973-),男,湖南岳阳人,教授,博士,博士生导师,研究方向:大数据、智能制造,E-mail:lishaobo@gzu.edu.cn;

    徐兆(1996-),女,贵州贵阳人,博士研究生,研究方向:智能制造、人机工程学,E-mail:zxu9990@gmail.com。
  • 基金资助:
    国家重点研发计划资助项目(2023YFB3308802);国家自然科学基金面上项目 (52275480);贵州省基础研究计划(自然科学)青年及面上项目(黔科合基础-[2024]青年160,黔科合基础MS〔2025〕601))。

Abstract: With the new requirements of Industry 5.0 for knowledge-driven intelligent manufacturing,the field of mechanical assembly is faced with challenges such as sparse multi-modal data,entity semantic boundary blurring and long tail effect of data distribution.Therefore,a BERT-Tiny Transformer-CRF model with polynomial loss function was proposed to improve the efficiency of domain knowledge extraction in low resource scenarios.The domain prior knowledge was injected through knowledge distillation and semantic enhancement technology.A dimension adaptive feature compression module was designed to realize cross-modal feature fusion.Finally,a dynamic edge-aware decoding mechanism was constructed to achieve accurate positioning of entity boundaries.A comparative study with different entity recognition models was carried out on the self-built automated assembly data set.The results demonstrated that the proposed model had good adaptability in the entity recognition task of the automatic assembly field.The model was superior to other comparison models with 86.62% accuracy,85.27% accuracy,85.67% recall and 85.46% F1 value,which provided an effective technical method for the construction of knowledge graph in the field of mechanical automated assembly under Industrial 5.0.

Key words: BERT-Tiny Transformer-CRF model, data enhancement, PolyLoss, automated assembly

摘要: 随着工业5.0对知识驱动的智能制造提出新要求,机械装配领域面临多模态数据稀疏、实体语义边界模糊、数据分布呈现长尾效应的挑战。为此,提出一种融合多项式损失函数的BERT-Tiny Transformer-CRF模型,旨在提升低资源场景下的领域知识抽取效率。首先,通过知识蒸馏与语义增强技术注入领域先验知识,其次设计维度自适应特征压缩模块实现跨模态特征融合,最后构建动态边缘感知解码机制实现实体边界的精准定位。利用自主构建的自动化装配数据集,将所提方法与不同实体识别模型进行对比,实验结果表明,所提模型具有良好的泛化识别能力,以86.62%的准确率、85.27%的精确率、85.67%的召回率和85.46%的F1值优于其他模型,为工业5.0下机械自动化装配领域知识图谱的构建提供了一种有效的技术方法。

关键词: BERT-Tiny Transformer-CRF模型, 数据增强, PolyLoss, 自动化装配

CLC Number: