Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (8): 2829-2842.DOI: 10.13196/j.cims.2024.0171

Previous Articles     Next Articles

Multi-chart joint question answering method based on multimodal cross-fusion

WANG Xinxin1,2,CHEN Liang1+,LIU Changhong3,LIU Jinyu4   

  1. 1.School of Computer Science,Xi'an Polytechnic University
    2.School of Economics and Management,Shangluo University
    3.China Tobacco Chongqing Industrial Co.,Ltd.,Qianjiang Cigarette Factory
    4.College of Smart Tourism,Chongqing Vocational Institute of Tourism
  • Online:2025-08-31 Published:2025-09-04
  • Supported by:
    Project supported by the National Natural Science Foundation,China (No.51675108),and the Key Scientific Research Program of the Education Department of Shaanxi Province,China(No.22JS021).

基于多模态交叉融合的多图表联合问答方法

王鑫鑫1,2,陈亮1+,刘昌宏3,刘晋宇4   

  1. 1.西安工程大学计算机科学学院
    2.商洛学院经济管理学院
    3.重庆中烟工业有限责任公司黔江卷烟厂
    4.重庆旅游职业学院智慧旅游学院
  • 作者简介:
    王鑫鑫(1996-),男,陕西商洛人,硕士研究生,研究方向:数据可视化、多模态问答等,E-mail:595907410@qq.com;

    +陈亮(1977-),男,湖南怀化人,教授,博士,硕士生导师,研究方向:智能制造、工业大数据、数据可视化、制造业信息化等,通讯作者,E-mail:chenliang@xpu.edu.cn;

    刘昌宏(1976-),男,重庆人,工程师,硕士,研究方向:制造业信息化、工业大数据、计算机网络等,E-mail:liuch02@cncqti.com;

    刘晋宇(2002-),男,重庆人,本科本,研究方向:大数据技术、云计算、网络安全、数据可视化、人工智能等,E-mail:1138824768@qq.com。
  • 基金资助:
    国家自然科学基金资助项目(51675108);陕西省教育厅重点科学研究计划资助项目(22JS021)。

Abstract: To meet users'interactive exploration needs for correlation issues among multiple charts when direct access to the underlying database is not possible,a multi-chart joint question answering method was proposed.In this method,the joint interpretation of data was achieved from multiple charts through two core stages:data preparation and answer generation.In the data preparation stage,chart data was extracted and reconstructed into tabular data,and each cell was provided with a text description,offering a unified data format for subsequent models.Furthermore,to enhance model accuracy and response efficiency,a text fact filtering method was introduced,which could screen out texts relevant to user questions from a large amount of tabular text descriptions,providing precise data support for subsequent answer generation.In the answer generation stage,multi-modal fusion technology was employed to cross-fuse information from these two different modalities,enabling more accurate answers.

Key words: multi-chart joint question-answering, multi-modal fusion, text description, fact filtering

摘要: 为了满足在无法直接访问底层数据库的情况下,用户对于多张图表间关联性问题的交互式探索需求,提出了一种多图表联合问答方法。该方法通过两个核心阶段——数据准备和答案生成,实现了对多张图表数据的联合解读。在数据准备阶段,通过将图表数据提取重构为表格数据并对其每个单元格进行文本描述,为后续模型提供统一的数据格式。此外,为提高模型的准确性和回答效率,提出文本事实筛选方法,该方法能够在大量的表格文本描述中筛选出与用户问题相关的文本,为后续的答案生成提供精准的数据支持。在答案生成阶段,采用多模态融合技术,将这两种不同模态的信息进行交叉融合,以获取更精确的回答。

关键词: 多图表联合问答, 多模态融合, 表格文本描述, 事实筛选

CLC Number: