Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (7): 2552-2566.DOI: 10.13196/j.cims.2023.0030

Previous Articles     Next Articles

Working trajectory tracking control of loader working mechanism

LIANG Guodong1,2,JIANG Yong2,MENG Yu1+,CHEN Yanhui3,LIU Li1,BAI Guoxing1,GU Qing1   

  1. 1.School of Mechanical Engineering,University of Science and Technology Beijing
    2.BGRIMM Machinery & Automation Technology Co.,Ltd.
    3.School of Mechanical and Automotive Engineering,Guangxi University of Science and Technology
  • Online:2025-07-31 Published:2025-08-05
  • Supported by:
    Project supported by the National Key R&D Program,China (No.2019YFC0605300),the National Natural Science Foundation,China (No.52202505),the China Postdoctoral Science Foundation,China(No.2022M710354),and the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-20-052A1).

装载机工作机构作业轨迹跟踪控制

梁国栋1,2,姜勇2,孟宇1+,谌炎辉3,刘立1,白国星1,顾青1   

  1. 1.北京科技大学机械工程学院
    2.北矿机电科技有限责任公司
    3.广西科技大学机械与汽车工程学院
  • 作者简介:
    梁国栋(1989-),男,河南濮阳人,博士,研究方向:矿用设备智能化,E-mail:liangguodong1@bgrimm.com;

    姜勇(1980-),男,山东潍坊人,正高级工程师,博士,研究方向:矿用设备智能化,E-mail:jiangyong@bgrimm.com;

    +孟宇(1981-),男,内蒙古乌兰浩特人,教授,博士,研究方向:机器视觉、无人驾驶,通讯作者,E-mail:myu@ustb.edu.cn;

    谌炎辉(1973-),男,湖南安化人,教授,博士,研究方向:土方机械作业过程优化,E-mail:gxut_jx@163.com;

    刘立(1959-),男,甘肃兰州人,教授,博士,研究方向:智慧矿山、矿用设备自动化,E-mail:liliu@ustb.edu.cn;

    白国星(1992-),男,内蒙古乌兰察布人,讲师,博士,研究方向:工程车辆无人驾驶、自主作业,E-mail:gxbai@ustb.edu.cn;

    顾青(1982-),女,陕西西安人,副教授,博士,研究方向:智能交通、矿用车辆无人驾驶,E-mail:qinggu@ustb.edu.cn。
  • 基金资助:
    国家重点研发计划资助项目(2019YFC0605300);国家自然科学基金资助项目(52202505);中国博士后科学基金资助项目(2022M710354);中央高校基本科研业务费专项资金资助项目(FRF-TP-20-052A1)。

Abstract: Autonomous shoveling of loaders is the key technology to realize automatic and intelligent operation,and the tracking control of the target working trajectory is one of its core parts.The actual trajectory of the bucket in the pile is related to the indicators such as the operation output,so it is of great significance to realize the effective tracking control of the target working trajectory.The PID and other control methods without system models have problems such as large overshoot amplitude and buffeting under the system constraints.Since the Model Predictive Control (MPC) has the advantage of effectively dealing with system constraints to make the system operate smoothly,it was introduced into the motion control of the loader's working mechanism and a trajectory-tracking control method was proposed for the working mechanism based on the Nonlinear Model Predictive Control (NMPC).A kinematic model of the working mechanism in the drive space was established.Then,the description of the working trajectory was given.Furthermore,a trajectory-tracking controller for the working mechanism was designed based on the NMPC method.Finally,the Simulink/ADAMS co-simulation was carried out with the general PID as the comparison group.The analysis showed that under the same system constraints,for the different target trajectories,the maximum absolute error of the bucket-tip displacement based on the designed controller didn't exceed ±0.052m,which was 71% lower than the PID controller,and the maximum absolute error of the bucket angle didn't exceed ±2.58°,which was 16% lower than the PID controller.Moreover,the designed controller had a smoother control effect.The designed controller had better performance than the PID controller in dealing with system constraints and smoothness.

Key words: loader, working mechanism, PID control, model predictive control, nonlinear model predictive control

摘要: 装载机自主铲掘是实现自动化、智能化作业的关键技术,而实现对目标作业轨迹的跟踪控制是其核心部分之一,铲斗在料堆中的实际运动轨迹关系着作业产量等指标,因此实现对目标作业轨迹的有效跟踪控制具有重要意义。对于PID等无系统模型控制方法在系统约束下存在较大超调幅度及抖振等问题,鉴于模型预测控制(MPC)具有可有效处理系统约束使系统平稳运行的优点,将MPC思想引入到装载机工作机构运动控制中,提出了一种基于非线性模型预测控制(NMPC)的工作机构作业轨迹跟踪控制方法。首先建立了工作机构在驱动空间下的运动学模型,其次给出了作业轨迹描述,进而基于NMPC方法设计了用于工作机构作业的轨迹跟踪控制器,最后以常规PID为对照组进行了Simulink/ADAMS联合仿真。分析发现,在相同系统约束下,针对不同目标作业轨迹,相比PID控制,所设计控制器的斗尖位移最大绝对误差不超过±0.052m,同比降低了71%,铲斗转角最大绝对误差不超过±2.58°,同比降低了16%,且具有更平顺的控制效果。研究表明,所设计控制器在处理系统约束和平顺性方面相比PID控制器具有更优秀的表现。

关键词: 装载机, 工作机构, PID控制, 模型预测控制, 非线性模型预测控制

CLC Number: