Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (7): 2529-2542.DOI: 10.13196/j.cims.2023.0042

Previous Articles     Next Articles

Uncertain remanufacturing re-entrant flexible job-shop scheduling

ZHANG Shuai,WANG Jun,ZHANG Wenyu+   

  1. School of Information Management and Artificial Intelligence,Zhejiang University of Finance and Economics
  • Online:2025-07-31 Published:2025-08-05
  • Supported by:
    Project supported by the National Natural Science Foundation,China (No.51875503,51975512),the Zhejiang Provincial Science and Technology Innovation Leading Talent Foundation,China (No.2023R5213),and the Zhejiang Provincial "Pioneer" and "Leading Goose" R&D Pragram,China (No.2025C01010,2024C01034).

不确定环境下再制造可重入柔性车间调度优化研究

张帅,王军,张文宇+   

  1. 浙江财经大学信息管理与人工智能学院
  • 作者简介:
    张帅(1976-),男,江西萍乡人,教授,博士,博士生导师,研究方向:智能制造、云制造、群智能优化算法、人工智能等,E-mail:zhangshuai@zufe.edu.cn;

    王军 (1996-),男,安徽巢湖人,硕士研究生,研究方向:智能制造、生产调度、群智能优化算法和强化学习,E-mail:wangjunkyle@zufe.edu.cn;

    +张文宇 (1968-),男,浙江温州人,教授,博士,博士生导师,研究方向:智能制造、再制造、供应链、人工智能等,通讯作者,E-mail:wyzhang@e.ntu.edu.sg。
  • 基金资助:
    国家自然科学基金资助项目(51875503,51975512);浙江省科技创新领军人才资助项目(2023R5213);浙江省"尖兵"重点研发计划资助项目(2025C01010,2024C01034)。

Abstract: To deal with the uncertain remanufacturing scheduling optimization problem with re-entrant operation and flexible machines,a new remanufacturing re-entrant flexible job-shop scheduling model was proposed with bi-fuzzy theory to describe the uncertainty of processing time and cost.To solve this model,an improved NSGA-II algorithm was proposed,which integrated reinforcement learning to dynamically adjust the crossover rate for maintaining population diversity.Besides,in the algorithm,a new two-dimensional coding scheme was proposed to improve the algorithmic efficiency,a hybrid population initialization strategy was embedded to improve the initial population quality,and a local search strategy was adopted to enhance the local search capability.Finally,simulation experiments demonstrated the performance and effectiveness of the proposed algorithm.

Key words: 再制造, 双模糊理论, 可重入柔性车间调度, NSGA-Ⅱ算法, 强化学习

摘要: 针对再制造过程中加工时间和成本的不确定性问题,引入双模糊理论进行二维模糊化处理,同时考虑了再制造操作可重入和机器柔性的特点,构建了再制造可重入柔性车间调度优化模型。在此基础上,提出了一种基于强化学习的改进型NSGA-Ⅱ算法(RLNSGA-Ⅱ),集成了强化学习技术对种群交叉率进行动态优化以提升种群多样性。此外,还提出了一种新的二维编码方案以提高算法效率,嵌入了混合种群初始化策略以提高初始种群质量,采用了局部搜索策略以增强局部搜索能力。最后,通过仿真实验验证了该算法的有效性和优越性。

关键词: TH165, TP18

CLC Number: