Computer Integrated Manufacturing System ›› 2025, Vol. 31 ›› Issue (5): 1762-1778.DOI: 10.13196/j.cims.2024.BPM12

Previous Articles     Next Articles

Method for predicting absolute remaining time of business processes based on prefix trace representation learning and attention mechanism

TIAN Yinhua1,PANG Xiaowen1,YANG Ruimin1,HAN Dong2+,WANG Lu3,DU Yuyue3   

  1. 1.College of Intelligent Equipment,Shandong University of Science and Technology
    2.College of Continuing Education,Shandong University of Science and Technology
    3.College of Computer Science and Engineering,Shandong University of Science and Technology
  • Online:2025-05-31 Published:2025-06-06
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.72101137,61973180),the Humanities and Social Science Research Youth Fund of Ministry of Education,China(No.21YJCZH150,20YJCZH159),the Natural Science Foundation of Shandong Province,China(No.ZR2021MF117,ZR2022QF020),the Key R&D Program (Soft Science) of Shandong Province,China(No.2022RKY02009),and the Shandong Digital Economy Research Base Project of Research Center of Shandong Province on “Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era” and Shandong University of Science and Technology,China(No.SDSZJD202314).

基于前缀轨迹表示学习和注意力机制的业务流程绝对剩余时间预测方法

田银花1,庞孝文1,杨瑞敏1,韩咚2+,王路3,杜玉越3   

  1. 1.山东科技大学智能装备学院
    2.山东科技大学继续教育学院
    3.山东科技大学计算机科学与工程学院
  • 作者简介:
    田银花(1982-),女,山东肥城人,副教授,博士,硕士生导师,研究方向:Petri网、流程挖掘等,E-mail:skdxxtyh@163.com;

    庞孝文(1996-),男,河南周口人,硕士研究生,研究方向:流程挖掘、预测性流程监控等,E-mail:pangxiaowen1996@163.com;

    杨瑞敏(2000-),女,山东德州人,硕士研究生,研究方向:流程挖掘、预测性流程监控等,E-mail:yangruimin914@163.com;

    +韩咚(1982-),男,山东泰安人,讲师,博士研究生,研究方向:流程挖掘、资源管理等,通讯作者,E-mail:aal130_2011@163.com;

    王路(1989-),女,山东泰安人,副教授,博士,硕士生导师,研究方向:过程挖掘、业务过程管理、工作流等,E-mail:wanglu253@126.com;

    杜玉越(1960-),男,山东聊城人,教授,博士,博士生导师,研究方向:软件工程、形式化技术、Petri网等,E-mail:yydu001@163.com。
  • 基金资助:
    国家自然科学基金资助项目(72101137,61973180);教育部人文社会科学研究青年基金资助项目(21YJCZH150,20YJCZH159);山东省自然科学基金资助项目(ZR2021MF117,ZR2022QF020);山东省重点研发计划(软科学)资助项目(2022RKY02009);山东省习近平新时代中国特色社会主义思想研究中心山东科技大学山东数字经济研究基地资助项目(SDSZJD202314)。

Abstract: Remaining time prediction can effectively enhance the risk response ability of enterprises.The existing methods have problems such as insufficient corpus in trajectory characterization,difficulty in capturing key information,limited and universal deep learning models applied,and the need to train multiple models based on different lengths.To address the above issues,a method for predicting absolute remaining time based on prefix trajectory representation learning method and attention mechanism was proposed.A prefix trajectory representation learning method was designed to obtain the representation vector.Then,the PTr-Transformer model was proposed by combining with the attention mechanism.Finally,the model was tested on 5 real event logs,and the results showed that it could effectively improve the remaining time prediction accuracy for large-scale datasets,with a maximum improvement of 8.3%.

Key words: remaining time prediction, business process management, pre-trace, attention mechanism, represent learningremaining time prediction, business process management, pre-trace, attention mechanism, represent learning

摘要: 剩余时间预测可以提升企业的风险应对能力,现有的预测方法存在轨迹刻画中语料库不丰富难以捕捉关键信息、应用的深度学习模型单一且通用性不足以及需要根据不同长度训练多个模型等问题。针对上述问题,提出一种基于前缀轨迹表示学习方法和注意力机制的绝对剩余时间预测模型。首先,设计一种前缀轨迹表示学习方法获取表示向量,然后结合注意力机制提出PTr-Transformer模型。最后,该模型在5个真实事件日志中进行实验,结果表明针对大规模数据集可以有效提升剩余时间预测精度,最高可提升8.3%。

关键词: 剩余时间预测, 业务流程管理, 前缀轨迹, 注意力机制, 表示学习

CLC Number: