Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (10): 3633-3642.DOI: 10.13196/j.cims.2022.0143

Previous Articles     Next Articles

Instruction text proofreading model oriented to speech interaction system for YSU-Ⅱ lower limb rehabilitation robot

ZHONG Meiyu1,WU Peiliang1,2+,DOU Yan1,3,ZHANG Xiaodan1,KONG Lingfu1,2   

  1. 1.School of Information Science and Engineering,Yanshan University
    2.The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province
    3.The Key Laboratory of Software Engineering of Hebei Province
  • Online:2024-10-31 Published:2024-11-08
  • Supported by:
    Project supported by the National Key R & D Program,China(No.2018YFB1308300),the National Natural Science Foundation of China Regional Joint Fund,China(No.U20A20167),the Beijing Municipal Natural Science Foundation,China(No.4202026),the Natural Science Foundation of Hebei Province,China(No.F202103079),the Innovation Capability Improvement Plan of Hebei Province,China(No.22567626H),and the Key Laboratory of Software Engineering of Hebei Province,China(No.22567637H).

面向YSU-Ⅱ下肢康复机器人语音交互系统的指令文本校对模型

仲美玉1,吴培良1,2+,窦燕1,3,张晓丹1,孔令富1,2   

  1. 1.燕山大学信息科学与工程学院
    2.河北省计算机虚拟技术与系统集成重点实验室
    3.河北省软件工程重点实验室
  • 作者简介:
    仲美玉(1993-),女,河北邢台人,博士研究生,研究方向:机器人智能信息处理,E-mail:zhongmy1019@163.com;

    +吴培良(1981-),男,河北石家庄人,教授,博士,研究方向:机器人智能信息处理、机器人操作技能学习、深度强化学习,通讯作者,E-mail:peiliangwu@ysu.edu.cn;

    窦燕(1968-),女,陕西西安人,教授,博士,研究方向:机器视觉与模式识别,E-mail:douyan@ysu.edu.cn;

    张晓丹(1992-),女,河北保定人,博士研究生,研究方向:模式识别,E-mail:xdzhang1012@163.com;

    孔令富(1957-),男,吉林公主岭人,教授,博士,研究方向:智能控制与智能信息处理、机器人视觉,E-mail:lfkong@ysu.edu.cn。
  • 基金资助:
    国家重点研发计划资助项目(2018YFB1308300);国家自然科学基金区域联合基金资助项目(U20A20167);北京市自然科学基金资助项目(4202026);河北省自然科学基金资助项目(F202103079);河北省创新能力提升计划资助项目(22567626H);河北省软件工程重点实验室资助项目(22567637H)。

Abstract: To resolve the problem of voice command recognition errors existing in the speech interaction system for YSU-Ⅱ lower limb rehabilitation robot,a Bidirectional Gated Recurrent Unit (Bi-GRU) based Seq2Seq model was proposed to detect and correct the errors in instruction text.In addition,a Contextual and Keywords-based Attention (CK Attention) mechanism was proposed to enhance the performance of instruction text proofreading model.To objectively evaluate the performance of the model,a corpus for rehabilitation robot training tasks was established,and five 5-fold cross-validation method was employed to conduct a series of experiments on the corpus.The experimental results demonstrated that the Bi-GRU based Seq2Seq model was applicable for the instruction text proofreading task,and the CK Attention mechanism contributed to improve the performance of the text proofreading model.The detection F1 and the correction F1 of the proposed model had reached 97.72% and 93.89% respectively.The processing time of the instruction text proofreading model for common instructions was 0.156 s ~0.391 s.

Key words: text proofreading, speech interaction, Seq2Seq, bidirectional gated recurrent unit, attention mechanism

摘要: 针对YSU-Ⅱ下肢康复机器人语音交互系统存在指令误识的问题,构建了基于双向门控循环单元的Seq2Seq模型来检测并纠正指令文本中的错误字符,提出一种基于指令上下文和关键字的注意力机制(CK Attention),用于捕获指令文本的上下文语义和关键字信息,以提升模型的文本校对能力。面向康复机器人的训练任务自行建立了语料库,并采用5次5折交叉验证法在该语料库上开展了相关实验,以客观评估模型性能。实验结果表明,所建模型适用于指令文本校对任务,CK Attention机制能够有效提升模型的文本校对性能,其检错F1值和纠错F1值分别达到97.72%和93.89%,对常用指令文本的校对时长在0.156 s~0.391 s之间。

关键词: 文本校对, 语音交互, Seq2Seq, 双向门控循环单元, 注意力机制

CLC Number: