Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (10): 3578-3587.DOI: 10.13196/j.cims.2023.0199

Previous Articles     Next Articles

Exposure correction method based on multi-level pyramid information fusion

WU Wenjiang1,2,LIU Xinjun1,3,ZHENG Liaomo1,2,WANG Shiyu1,2+,SUN Shujie4   

  1. 1.Shenyang Institute of Computing Technology,Chinese Academy of Sciences
    2.Shenyang CASNC Technology Co.,Ltd.
    3.University of Chinese Academy of Sciences
    4.School of Electromechanical and Automotive Engineering,Yantai University
  • Online:2024-10-31 Published:2024-11-07
  • Supported by:
    Project supported by the National Natural Science Foundation,China (No.62002308),the Shenyang Young and Middle-Aged Science and Technology Innovation Talent Support Program,China (No.RC210488),the Yantai Science and Technology Innovation Development Program,China(No.2022JCYJ036),and the Doctoral Startup Fund Program of Liaoning Province,China(No.2023-BS-214).

基于多层级金字塔信息融合的曝光矫正方法

吴文江1,2,刘信君1,3,郑飂默1,2,王诗宇1,2+,孙树杰4   

  1. 1.中国科学院沈阳计算技术研究所
    2.沈阳中科数控技术股份有限公司
    3.中国科学院大学
    4.烟台大学机电汽车工程学院
  • 作者简介:
    吴文江(1963-),男,辽宁沈阳人,中国科学院沈阳计算技术研究所博士生导师,沈阳中科数控技术股份有限公司研究员,硕士,研究方向:数控技术、嵌入式系统等,E-mail:wwj@sict.ac.cn;

    刘信君(1995-),男,山东淄博人,博士研究生,研究方向:机器人视觉系统,E-mail:liuxinjun@sict.ac.cn;

    郑飂默(1982-),男,辽宁沈阳人,中国科学院沈阳计算技术研究所博士生导师,沈阳中科数控技术股份有限公司研究员,博士,研究方向:高档数控系统五轴加工功能等,E-mail:zhengliaomo@sict.ac.cn;

    +王诗宇(1990-),男,辽宁沈阳人,中国科学院沈阳计算技术研究所硕士生导师,沈阳中科数控技术股份有限公司副研究员,博士,研究方向:机器人视觉系统,通讯作者,E-mail:wangshiyu@sict.ac.cn;

    孙树杰(1987-),男,山东烟台人,副教授,博士,研究方向:高精数控系统,E-mail:sunshujie@sict.ac.cn。
  • 基金资助:
    国家自然科学基金资助项目(62002308);沈阳市中青年科技创新人才支持计划资助项目(RC210488);烟台市科技创新发展计划资助项目(2022JCYJ036);辽宁省博士科研启动基金计划资助项目(2023-BS-214)。

Abstract: To address underexposure and overexposure in images,a multi-level information fusion exposure correction network based on the Laplacian pyramid structure was developed.Each network level adopted a U-Net-like encoder-decoder architecture in its correction module.A multi-scale convolutional encoder based on ConvNeXt-tiny was designed as the primary feature extraction unit to enhance feature extraction ability while reducing the model's parameter count.To tackle the issue of checkerboard artifacts arising during image up-sampling,a dual-path up-sampling module combining bilinear interpolation and sub-pixel convolution was proposed.The network demonstrated effective results in both quantitative and qualitative validations on a large-scale exposure correction dataset.Dowel positioning experiments showed significant improvements in feature repeatability,positioning accuracy,and stability at varying contrast thresholds when the network was applied to image enhancement.

Key words: information fusion, exposure correction, multi-scale convolutional encoder, dual-path up-sampling

摘要: 针对图像曝光不足和曝光过度的问题,设计了基于拉普拉斯金字塔结构的多层级信息融合曝光矫正网络,该网络每个层级的矫正模块采用类U-Net的编码器解码器架构。为了提高矫正模块的特征提取能力并减少模型参数量,设计了基于ConvNeXt-tiny的多尺度卷积编码器作为基本特征提取单元。针对图像上采样过程中可能出现的棋盘格伪影问题,提出一种基于双线性插值和亚像素卷积的双路上采样模块。通过定量和定性验证,在大规模曝光矫正数据集上均取得较好的结果。定位销定位实验显示,在不同对比度阈值下,应用该网络进行图像增强显著提升了特征可重复性、定位精度和稳定性。

关键词: 信息融合, 曝光矫正, 多尺度卷积编码器, 双路上采样

CLC Number: