Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (5): 1847-1855.DOI: 10.13196/j.cims.2021.0731

Previous Articles     Next Articles

Design of rolled steel end defects detection system based on deep learning

ZHANG Xuerong1,XIANG Feng2+,LI Hongjun3,ZHANG Chi3,ZHOU Sicong2,ZUO Ying4   

  1. 1.Research Institute,Baoshan Iron & Steel Co.,Ltd.
    2.College of Machinery Automation,Wuhan University of Science and Technology
    3.School of Mechanical Engineering and Automation,Wuhan Textile University
    4.School of Automation Science and Electrical Engineering,Beihang University
  • Online:2024-05-31 Published:2024-06-13
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51975431,51805020).

基于深度学习的钢卷端面缺陷检测系统设计

张雪荣1,向峰2+,李红军3,张弛3,周思聪2,左颖4   

  1. 1.宝山钢铁股份有限公司中央研究院
    2.武汉科技大学机械自动化学院
    3.武汉纺织大学机械工程与自动化学院
    4.北京航空航天大学自动化科学与电气工程学院
  • 作者简介:张雪荣(1980-),男,湖南衡阳人,主任研究员,硕士,研究方向:冶金机械、数字制造研究等,E-mail:E73050@baosteel.com; +向峰(1983-),男,湖北武汉人,教授,博士,博士生导师,研究方向:面向服务的智能制造、数字孪生、绿色制造等,通讯作者,E-mail:xiangfeng@wust.edu.cn; 李红军(1973-),男,湖北武汉人,教授,博士,硕士生导师,研究方向:工业自动化与激光控制等,E-mail:lhj@wtu.edu.cn; 张弛(1979-),男,湖北武汉人,教授,硕士生导师,研究方向:智能制造技术、数字化纺织装备设计及制造等,E-mail:czhang1@wtu.edu.cn; 周思聪(1999-),男,湖北麻城人,硕士研究生,研究方向:数字孪生、面向服务的智能制造等,E-mail:545367342@qq.com; 左颖(1986-),男,湖北武汉人,副研究员,博士,研究方向:面向服务的智能制造、绿色智能制造服务及应用、产品能效评估/建模/仿真与优化等,E-mail:yingzuo@buaa.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(51975431,51805020)。

Abstract: Because of the complexity of image background,different defect characteristics and lack of standard defect data set,the hot rolled steel end defects are difficult to automatically identify with traditional visual methods.The deep learning-based technical architecture of defect detection for hot-rolled steel was presented,and the key techniques such as image acquisition,preprocessing and segmentation,deep neural network algorithm design and defect feature database construction were given.A deep learning-based steel roll end defect detection system was designed.The test showed that the defect detection rate of this system was more than 90%,which solved the industrial problem of long-term dependence on manual naked eye recognition of end surface defects of hot rolling steel,and realizes the online,automatic and accurate detection of end surface defects.A complete set of end defect detection technology and equipment were formed,which were used in many hot rolling lines in the steel industry.The application results showed that the detection system was stable and reliable.

Key words: steel roll, end defects, deep learning, identification

摘要: 针对热轧钢卷端面图像背景复杂、缺陷特征各异、缺乏标准缺陷数据集,用传统视觉方法难以自动识别问题,提出了基于深度学习的热轧钢卷端面缺陷检测的技术架构,给出了该框架下的图像采集、预处理与分割、深度神经网络算法设计和缺陷特征数据库搭建等关键技术,最后开发了基于深度学习的钢卷端面缺陷检测系统,试验表明该系统的典型缺陷检出率在90%以上,解决了热轧钢卷端面缺陷长期依赖人工肉眼识别的行业性难题,实现了端面缺陷的在线、自动、精准检测,所形成的成套端面缺陷检测技术和装备,在钢铁行业多条热轧产线稳定、可靠地投用运行。

关键词: 钢卷, 端部缺陷, 深度学习, 识别

CLC Number: