›› 2015, Vol. 21 ›› Issue (第6期): 1626-1636.DOI: 10.13196/j.cims.2015.06.027
Previous Articles Next Articles
Online:
Published:
Supported by:
穆东1,王超2+,王胜春3,周圣川4
基金资助:
Abstract: To improve the efficiency of sequential Simulated Annealing(SA)for solving Time Dependent Vehicle Routing Problem(TDVRP),a parallel-Simulated Annealing(p-SA)algorithm was proposed.Push Forward Insertion Heuristic(PFIH)was implemented to generate an initial solution,and four kinds of local search moves within the structure of master-slave p-SA were developed to optimize the initial solution.Computational results were reported for 56 test problems with 100 customers from Figliozzi's benchmark,and the results showed that p-SA could get 5 times speedup when 6 threads was used by comparing with traditional sequential SA,and could get better solutions than Figliozzi's algorithm within an accepted computational time.Therefore,p-SA could solve TDVRP effectively and could be extended to handle other variants of vehicle routing problems and other combinatorial optimization problems.
Key words: vehicle routing, time dependent speeds, parallel algorithm, simulated annealing
摘要: 为提高传统串行模拟退火算法求解时间依赖型车辆路径问题的效率,提出一种并行模拟退火算法。该算法首先使用前向插入启发式算法生成初始解,在主从式并行模拟退火算法框架下使用4种邻域搜索法对初始解进行优化。采用Figliozzi测试数据库(包含56个测试问题,顾客数均设定为100)对算法性能进行测试,结果表明在不同时间依赖型行驶函数情形下,当使用6个线程时,并行模拟退火算法相对于传统串行模拟退火算法可以得到近似于5倍的加速比,且均能在较快时间内得到比Figliozzi算法更优的解。因此,并行模拟退火算法能有效地求解时间依赖型车辆路径问题,并且可以灵活地扩展解决其他车辆路径问题和组合优化问题。
关键词: 车辆路径, 时间依赖型, 并行算法, 模拟退火
CLC Number:
O221.1
U116.2
穆东,王超,王胜春,周圣川. 基于并行模拟退火算法求解时间依赖型车辆路径问题[J]. 计算机集成制造系统, 2015, 21(第6期): 1626-1636.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cims-journal.cn/EN/10.13196/j.cims.2015.06.027
http://www.cims-journal.cn/EN/Y2015/V21/I第6期/1626