计算机集成制造系统 ›› 2025, Vol. 31 ›› Issue (12): 4542-4555.DOI: 10.13196/j.cims.2024.Z58

• • 上一篇    下一篇

个性化产品工艺知识和交互语义增强的主动式人机协作方法

丁鹏飞1,2,3,张洁2,3+,张朋2,3   

  1. 1.东华大学机械工程学院
    2.东华大学人工智能研究院纺织工业人工智能技术教育部工程研究中心
    3.东华大学人工智能研究院上海工业大数据与智能系统工程技术研究中心
  • 出版日期:2025-12-31 发布日期:2026-01-08
  • 作者简介:
    丁鹏飞(1994-),男,江苏盐城人,博士研究生,研究方向:人机协作装配、具身智能和人本智造,E-mail:pengfeiding@mail.dhu.edu.cn;

    +张洁(1963-),女,江苏江阴人,教授,博士,博士生导师,研究方向:智能制造与机器人、具身智能、人机协作、大数据智能、强化学习、机器认知学习和复杂系统建模与控制,通讯作者,E-mail:mezhangjie@dhu.edu.cn;

    张朋(1988-),男,湖北仙桃人,副教授,博士,硕士生导师,研究方向:制造系统优化调度与控制、智能优化算法、复杂系统建模与调度、智能制造与机器人、具身智能、人机协作,E-mail:zhangp88@dhu.edu.cn。
  • 通讯作者简介:张洁(1963-),女,江苏江阴人,教授,博士,博士生导师,研究方向:智能制造与机器人、具身智能、人机协作、大数据智能、强化学习、机器认知学习和复杂系统建模与控制,通讯作者,E-mail:mezhangjie@dhu.edu.cn
  • 基金资助:
    国家自然科学基金面上资助项目(52375485);国家自然科学基金资助项目(52005099);国家自然科学基金区域创新发展联合基金重点支持资助项目(U24A20262)。

Personalized product process knowledge and interactive semantics-enhanced proactive human-robot collaboration

DING Pengfei1,2,3,ZHANG Jie2,3+,ZHANG Peng2,3   

  1. 1.College of Mechanical Engineering,Donghua University
    2.Engineering Research Center of Artificial Intelligence for Textile Industry,Ministry of Education,Institute of Artificial Intelligence,Donghua University
    3.Shanghai Engineering Research Center of Industrial Big Data and Intelligent System,Institute of Artificial Intelligence,Donghua University
  • Online:2025-12-31 Published:2026-01-08
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.52375485,52005099),and the  Key Support Project of Regional Innovation and Development Joint Fund of National Natural Science Foundation,China(No.U24A20262).

摘要: 工业5.0强调以人为本、弹性制造和可持续性,促进了工业个性化产品发展,此类产品灵活多变的非结构化生产环境需要高度智能的人机协作。当前“空间感知过程分析决策推理任务执行”框架驱动的人机协作方法已取得显著进展,但仍受限于交互语义理解不足和工艺知识缺失,难以应对复杂多变的制造环境。因此,提出工艺知识和交互语义增强的主动式人机协作方法。为增强空间感知能力,设计知识增强自适应微调方法,提升大模型对制造领域知识的理解与迁移。为增强过程分析与决策推理能力,构建操作员意图多样化预测模型,深化人机交互分析。为增强任务执行能力,设计深度强化学习方法,实现持续学习与任务规划。在人机协作装配案例中,所提方法可以根据操作员指令和装配空间感知,保证机器人成功完成任务,可证明其可行性与有效性。

关键词: 工业5.0, 智能制造, 人本智造, 主动式人机协作

Abstract: Industry 5.0 emphasizes human centricity,flexible manufacturing and sustainability,fostering the advancement of personalized industrial products.The unstructured and dynamically changing production environments of such products demand highly intelligent Human-Robot Collaboration (HRC).Although existing HRC frameworks driven by the “spatial perception-process analysis-decision reasoning-task execution” paradigm had made significant progress,they remain constrained by limited interaction semantic understanding and insufficient process knowledge,making it difficult to adapt to complex and variable manufacturing conditions.To address these challenges,a process knowledge and interaction semantics-enhanced proactive human-robot collaboration method was proposed.Specifically,a knowledge-augmented adaptive fine-tuning approach was developed to enhance spatial perception and improve large models'understanding and transferability of manufacturing knowledge.A diverse operator intention prediction model was constructed to strengthen process analysis and decision reasoning by deepening human-robot interaction understanding.Furthermore,a deep reinforcement learning-based approach was designed to improve task execution through continual learning and task planning.In a human-robot collaborative assembly case,the proposed method enabled robots to successfully complete tasks by interpreting operator instructions and perceiving the assembly space,demonstrating its feasibility and effectiveness.

Key words: Industry 5.0, smart manufacturing, human-centric smart manufacturing, proactive human-robot collaboration

中图分类号: